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Outline 
•  Problem Setting 

•  Instance-Based vs. Model-Based 

•  Model-Based Algorithms  
–  Estimation of Distribution Algorithms (EDAs) 

–  Cross-Entropy (CE) Method 

–  Model Reference Adaptive Search (MRAS) 

•  Convergence of MRAS 

•  Numerical Examples 

•  Extension to Stochastic Optimization and MDPs 

•  A New Particle Filtering Framework (if time) 



3 

• Solution space  

-  continuous or discrete (combinatorial) 

• Objective function H(·):  
• Objective: find optimal              such that 

-  Assumptions: existence, uniqueness  
 (but possibly many local minima) 

Problem Setting 
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•  Instance-based approaches: search for new solutions 
depends directly on previously generated solutions 

-   simulated annealing (SA) 

-   genetic algorithms (GAs) 

-   tabu search 

-  nested partitions 

Overview of Global Optimization Approaches 
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Model-Based Search Methods 

probability model 

gk 

sampling 

updating mechanism 

new candidate solutions 

Xk 

selection 
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Model-Based Approach: Graphical Depiction 
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Combinatorial Optimization Example: TSP 
How do we formulate this problem  

to use a probability distribution? 
•  routing matrix of probability of arc i  j.   

•  Example: four cities  
[0     0.5  0.4  0.1] 
[0.2    0   0.6  0.2] 
[0.4  0.4    0   0.2] 
[0.3  0.3  0.4    0 ] 

•  What is convergence? 
•  single 1 in each row 
•  single 1 in each column 



8 

Model-Based Methods 

similarities to genetic algorithms 
•  uses a population 
•  selection process  
•  randomized algorithm,   

 but uses “model” (distribution) instead of operators 
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Main Model-Based Methods 

•  estimation of distribution algorithms (EDAs) 
 Muhlenbein and Paas (1996);  
 book by Larranaga and Lozano (2001) 
 [other names, e.g., probabilistic model-building GAs] 

•  cross-entropy method (CE)  
 Rubinstein (1997, 1999)  (www.cemethod.org);  
 book by Rubinstein and Kroese (2004) 

•  probability collectives (Wolpert 2004) 

•  model reference adaptive search (MRAS) 
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Model-Based Methods (continued) 

BIG QUESTION: 
How to update distribution? 

•  traditional EDAs use an explicit construction,  
   can be difficult & computationally expensive 

•  CE method uses single fixed target distribution 
(optimal importance sampling measure) 

•  MRAS approach:  
 sequence of implicit model reference distributions 
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•  ALTERNATIVE: sample from a parameterized        
family of distributions, and update parameters by 
minimizing “distance” to desired distributions 
(reference distributions in MRAS) 

MRAS and CE Methods 

parameterized 
 distribution samples parameter 

 selection 
parameterized 

 family  

reference 
 distributions  
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•  Main characteristics 
-  Given sequence of reference distributions {gk(·)} 

-  works with a family of parameterized probability 
distributions {f (·,θ)} over the solution space  

-  fundamental steps at iteration k : 

*   generate candidate solutions according to the current 
probability distribution f (·, θk) 

*   calculate θk+1  using data collected in previous step to 
bias future search toward promising regions, by 
minimizing distance between {f (·,θ)} and gk+1(·) 

-  Algorithm converges to optimal if {gk(·)} does 

Model Reference Adaptive Search  
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•  reference distribution construction:  
Next distribution obtained by tilting previous 

where S(.) is non-negative and strictly decreasing 
    (increasing for max problems) 

Properties: 

•  selection parameter ρ  determines the proportion of 
solutions used in updating θk+1 

MRAS: Specific Instantiation 
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• (1- ρ)-quantiles w.r.t. f (·,θk)  

• update θk+1 as �

where 

MRAS: Parameter Updating 
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•  covers broad class of distributions 

•  closed-form solution for θk+1  

•  global convergence can be established under some 
   mild regularity conditions 

*  multivariate Gaussian case 

*  independent univariate case 

Restriction to Natural Exponential Family (NEF) 
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MRAS: Monte-Carlo version 
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Comparison of MRAS & CE 
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Numerical Examples (deterministic problems) 
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•  Numerical results for ATSPs  
-   DISCRETE distribution (matrix: probability ij on tour)  
-   Good performance with modest number of tours generated 
-   ft70 case: total number of admissible tours = 70! ≈ 10100 

Numerical Examples (deterministic problems) 
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where              are i.i.d. random observations at x. 

Extension to Stochastic Optimization 
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Extension to Stochastic Optimization 
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•  Xt  : inventory position in period t. 
•  Dt : the i.i.d exponential demand in period t 
•  h : per period per unit holding cost;  p: demand   
  lost penalty cost ; c: per unit ordering cost; 
     K: fixed set-up cost 

•  The objective is to minimize the long run
 average cost per period:  

(s,S) Inventory Control Problem 
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Case 1: c = h = 1, p=10,
 K=100, E[D]=200  

Case 2: c = h = 1, p=10,
 K=10000, E[D]=200  

(s,S) Inventory Control Problem 
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S2 S3 S4 

buffer1 buffer2 buffer3 

•  Input:  �
- μi: service rate of server i 
-  fi  : failure rate of server i 
-  ri  : repair rate of server i 
-  n :  total number of buffers available 

•  Let ni be the number of buffers allocated to Si
 satisfying Σni= n, the objective is to choose ni  to
 maximize the steady-state throughput    

Buffer Allocation in Unreliable Production Lines 

S1 
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Buffer Allocation in Unreliable Production Lines 
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Extension to MDPs 
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Filtering (with Enlu Zhou and M. Fu) 
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Optimization via Filtering 
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Optimization via Filtering 

Result: Using particle filtering (Monte Carlo simulation),
 EDAs, CE, MRAS can all be viewed in this framework.  
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•  Summary 

-  new general framework for problems with little structure 

-  guaranteed theoretical convergence   

-  good experimental performance 

•  Future Work 

-  incorporate known structure (e.g., local search)  

-  convergence rate, computational complexity 

-  more new algorithm instantiations in this framework 

-  more comparisons with other algorithms 


