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Outline

What Tsunami simulation means in this talk
Acceleration with FPGA/GPU

— Based on stream processing (pipelining) with loop
unrolling

— Based on parallel processing for decomposed regions

(Formal verification of those implementation)

— (Equivalence checking between FPGA/GPU
implementation and the original program in C/Fortran)

— Just show our strategy

Statistical model checking

— On software in Fortran
— Acceleration with FPGA/GPU



Motivation

* Based on the values of many earthquake sensors
(wired/wireless), compute how Tsunami wave will
propagate

* Goal: Realize supercomputer level performance in
Tsunami simulation with FPGA/GPU

. /

Tsunami as fast and

- « accurate as possible
| =

Earthquake sensors Generate initial wave from sensor data

geographically distributed  Propagate wave by numerically
solving partial differential equations




Tsunami simulation

* Tsunami simulation algorithm: Find solutions of fluid
dynamics equations

— Law of Conservation of Mass

— Law of Conservation of Momentum with and
without bottom friction

* Solved with known boundary conditions and
bathymetric input of the region

* Here the above is processed by numerically solving
sets of partial differential equations with finite
difference methods
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Partial differential equations to be solved

N = vertical displacement of water above still water

D=Total water depth = h+n

g = Acceleration due to gravity

A = horizontal eddy viscosity current

T = friction along x or y direction

M = water flux discharge along X direction
N = water flux discharge along Y direction

Momentum
equations along
X-axis and Y-axis
respectively
without bottom
friction
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Reference: Tsunami Modeling Manual by Prof Nobuo Shuto
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Here we use a simplified model: Linear
one (valid if sea depth is large enough)

 Shallow Water Theory (Long Wave Theory)

oM oM oN ,
a o Ty =0 (Mass Conservation)

™M E(M—2J+i MN +gD6_77+gn2M VM?Z4+N? =0

xalo) oo ) oD (Momentum Conservation)
oM 0 (MNY & (N? on gn°M 55

s &(?j+5(FJ+gDE+a.T M“+N°=0

n-waveheight D:depth g:gravity n:Manning M,N : flaxofx,y

(e Linear Long Wave Theory A

dn aM oN .
=0
oo o (Mass Conservation)
aM 8y 8N 8y
—— +gh =0, +gh =0 :
9 at &x &t &y (Momentum Conservatlon)/




Finite difference methods

 Solution of mass conservation equation based on
finite difference method

1,J,£)-N(i,j-1,t

oM oM ON

Where L at+ax+ay:0 t
<=

i, j =X, y coordinate >
Z(i,j,t) = Water Surface level at time t o
H(i,j,t) = Still water depth attime t /L)V///
dt = temporal step t+1l ~——~ /
dx = spatial step L L L 7

M(i,j,1) = water flux discharge along x-axis at time t
N(i,j,1) = water flux discharge along y-axis at time t
Z(i,j,2) = water surface level at time t+dt



TimeT

Time T+1

Wave Height Computation

Mass conservation Momentum conservation
(Wave height update) (Wave height update)




Target Tsunami Simulator

e “TUNAMI N1” program in FORTRAN
— Developed by Tohoku University

Wk

Initial Wave Height (Z0)
Computation

¥

Mass Conservation
4 Computation
(Wave height: Z)

. 1040 grids

CMoment:m Standing water depth H
onservation (1 grid: 1Tkm x 1km)

Computation
\_  (Momentum: M,N)

Wave Height Update
(1 iteration = 1 second)
_A
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C Implementation (base program)
* Mass and Momentum functions are computed

alternatively

— Each function raster-scans the grids

e Since there is no data dependency between the
computations at grids, they can be parallelized
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Speed of N1 simulation program
* Original Fortran program has been manually
converted into C

— Cis 4 times faster than Fortran in our environment

— C version is the base simulator

e Size of simulation area
e Grid width: 1[km]

* Numbers of grids: 1040*668
e Simulated time

* 1timestep=1sec

!

W

il

e 7,200 steps computed (2 hours)

* Tsunami simulation time on Intel microprocessor
(i7@2.93GHz, single core)
- 78.7 sec




/ Input /

Initial condition

( Main Loop
t=1; t<=T; t++ |
v

Open Boundary Condition

Momentum Conservation

v

Computation time[sec]
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Simulation Cycles and
Computation time of TUNAMI
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@ open boundary
B mass conservation

M initial
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Co-execution
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C on microprocessor

FPGA/GPU

Read earthquake
information from files

Compute initial wave
Load initial wave to DRAM

memory of FPGA board
Run FPGA
: I—
Idle

Store results into filés

Mass Conservation

Momentum Conservation

Read data from DRAM
Main loop
Store results to DRAM




Pipeline processing for higher throughpu1t4

* Latency

— After receiving input, how many cycles are required to
generate its output

* Throughput
— How frequently input data can be processed

Iteration Iter 1 || Iter2 || Iter3 °© oo Iter N
Time U Pipeline processing
Iater)cy i Iter N
Pipeline stages| | lfer3
_ \\\Iter z Goal: Faster throughput
Iteration L:@lg‘f 1 = Larger numbers of pipeline stages

Initiation interval (~throughput)



Typical way for larger pipelines N

* Usually each loop becomes one pipeline
— Multiple loops should be merged as much as possible

* Number of pipeline stages depends on the length of
each iteration

— Better to have larger loops

* Various loop optimizations have been proposed
— Formal analysis becomes possible with such transformations

for (i=0; i<N; i++) for (t1=0; t1<N; t1++)
for (j=0; j<N; j++) for (t2=0; t2<N; t2++) {
S0(0,i,j): AL TLj1+=ulil*V[j]; 50(j1,0)A[t2,t1] += u[t2]*v[t1];

for (i=0; i<N; i++) +i SO(i,j) i S13)) }S"I(i,j,"l)x[t"l]+:A[t2,t1]*y[t1];

fOF(jZO;j<N,'j++) e o o e o o o
ST(1,ij):x[il+=A[j1Li1*y[j]; \ ©c o o o 4
4

»
>

J

[Pluto 08] U. Bondhugula, et al. “"A Practical and Automatic Polyhedral Program
Optimization System,” in ACM PLDI'08, 2008

S ==t
J
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Transforming latency-based to

throughput-based computation

* Stream based programming
— Communication/buffering becomes explicit
— Easier for formal analysis as well

 Works for both FPGA and GPU

— And also for many-cores

Instruction Data
/E\ 2 \\P/O/ F\E’J/ \\sz W
= uP P2 “] A “l
= J< > P3 N \
- 4 _ 4:“ Hardw

“instruction, latency-based” “data, throughput-based”
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Introducing streams
« Steam = Sequence of data, functions, or combined

M.N.H.Z

’

/

@ |
i Formal equivalence
Z— checking with
manipulation of
@ / transformation matrix

NN NN

/
q
q
q

1%
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One stream for

R

y

y

One stream for

y

each time step

XX
Original Data object

program code (Can be a Single

stream)
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Strategy for GPU implementation

 Asshown earlier, stream is based on
each region
— Easier and more efficient for GPU

Time

/
q
/
/

1
N AN N AN AN

— But depend on memory access
architecture of the target GPU systems

\ 4

* Essentially area where Tsunami should be simulated
is decomposed into a set of small regions
— Each core of GPU is in charge of one region
— Straight forward parallelism
— Pipelined computation inside each core



Target GPGPU Architecture

Core Core Core Core

Core Core Core Core

Core Core Core Core

= B BB E
Core Core Core Core
Core Core Core Core
L2 Cache (768KB)

Core Core Core Core

Core Core Core Core

Global Memory (6GB)

SM
SM
SM
SM
SM
SM
SM

Core Core Core Core

Register File (32k words)

NVIDIA Tesla C2075 Shared Memory /L1 Cache
(Fermi architecture) (64KB)

14 Streaming Multiprocessors
6GB Main Memory

768KB L2 Cache Streaming Multiprocessor (SM)

32 Integer & FP cores



Naive GPGPU

Implementation
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[Gidra et al., IEEE HPCC 2011]

Mass Conservation (Z update)

Block
(16x16 threads)

Threads in a block shares
the shared memory

Global Memory (6GB)
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Warp (32 threads)
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FEFEEEE

Core

s, Threads in a warp are
S .
\\executed in parallel

Core

Register File (32k words)

Shared Memory /L1 Cache

(64KB)

Ll |

»

Momentum Conservation (M,N update)
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Performance Bottleneck

* Runtime is dominated by global memory accesses

— #global accesses
* Mass: Read H,Z,M,N (1040x668x6), Write Z (1040x668)
* Momentum: Read H,Z,M,N (1040x668x6), Write M,N (1040x668x2)
* Total: 1040x668x12 reads & 1040x668x3 writes

— Global memory synchronization between Mass and Momentum

 How to reduce the accesses?
— Technique 1: Using shared memory to share H,Z,M,N between
Mass and Momentum
* Can eliminate all H,Z,M,N read in Momentum
— Technique 2: Merging Mass and Momentum to eliminate global
memory synchronization

* More chance to utilize computation cores during memory access



Technique 1: Using Shared Memory

* For each block, (H,Z,M,N) are loaded to shared memory

— #global accesses

* Mass: Read H,Z,M,N (1040x668x4), Write Z (1040x668)
* Momentum: Write M,N (1040x668x2)
* Total: 1040x668x4 reads (67% reduction) & 1040x668x3 writes

Global Memory
H,Z, M, N

o A

e \ Core

Core Core Core Core

Original Implementation

Global Memory
H,Z, M N

‘ Block transfer

Shared Memory

e [ cﬁ{ \tx i3

Core Core ore Core

Shared Memory Implementation
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Technique 2: Eliminating Synchronization

* Global synchronization can be eliminated by
merging Mass and Momentum functions
— However, Mass and Momentum depend on
neighboring values of the block

* Neighboring values are loaded onto the shared memory
* Neighboring Z values are also computed

* Duplicated load & computation do not impact on runtime

Dependency on
neighborhood c
)
- 5
T D i1
)

> S
v =

Origina Expanded Block with Mass a Momentum

| Neighborhood Computation Computation

Block
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Experimental Results
CUDA based implementation
Runtime of 7200 iterations (2 hours)
Original C implementation
— Runtime: 78.7 seconds
Naive GPGPU implementation
— Runtime: 2.75 seconds (28.6X speedup)

Our GPGPU implementation
— Runtime: 1.96 seconds (40.2X speedup)

24



—— Overview of FPGA System

Host | Device
Memory Memory
48[Gbyte] 24[Gbyte] FPGA(Virtex6 SX475T) Resources
38[Gbyte/sec] LUT 297600
CPU 2[Gbyte/sec] FPGA FF 595200
Xeon X5650 Virtex6
@2.67GHz SX475T BRAM 1064
| . _FPGA Board DSP 2016
HDD
[ Host Code (C) ) Data Flow Graph (MaxJava) L

int in_data[n] = {1,2,3,4,5};

) Public class Example{
int out_data[n];

x = input();
y= X*X + X,
run_fpga( . . y = output()
input(“x”, in_data), }

output(“result”,out_data)

run_cycle(“Example”,n)
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Strategy for FPGA implementation

* Asshown earlier, stream is based on each
time step computation
— Like to keep communication between FPGA £
and DRAM as small amount as possible -
HZM.N
\ 4

Processing

Unit

- ZMN

Stream for each region Stream for each time step
e 84*A[Byte]*200[MHz] * 17*4[Byte]*200[MHz]=
=67[GByte/s] 13.6[GByte/s]

for 12 time steps for 12 time steps



Data Flow Graph(MaxJava)

Public class Example{

» Development using RTL

X = input(); require time and effort
Yy =X*X +X;
y = output() » DFG is more abstract

and reduces the
development time

MaxCompiler

Automatic Pipelining according to
\! the DFG and Clock Frequency

! RTL )

» This enable us to try
ET;:% more design alternatives

Q

Logic Synthesis

CLK

\ 2
.~ Gatelevel

Placing and Routing
\ 4
[ FPGA Configuration )
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DFG example

Generate DFG corresponding to as —
_ large as possible portions of codes
Int a, b, c;

void fCt() 0 1

{
a++: > e
if (¢ > 0) “
h e L T

elsew
b
b.

a*c; sS40

C = , '
} o b’ a’

Ems
—E




* Final Implementation has over 1,200 pipeline

sta ges
Before

:lzm M(t) ;N(t)

Processing Unit 1

N(t+1) \Z(t+1 ),M(t+N(t+1 )

Processing Unit 2

7(1+2) E‘I(H—Z)\\I(HZ)
P

rocessing Unit 3

iza+3) M(t+3) IiN(t+3)
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0.0

GPU

FPGA

B 7200(loop only)
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—SW(GPUWorkstation)
—GPU(GPUWorkstation)
——SW(FPGAWorkstation)
—FPGA(FPGAWorkstation)
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* FPGA is much better in terms of energy consumption

Power per second Power Consumption
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Time to compile DFG into FPGA implementation

* High/logic synthesis, placement & routing

The relationship of the number of unrolls and
compilation time

10 12 20
Number of Unrolls

200
0--[-,.
1 2 5



Statistical model checking on Tsunami
simulation results

* Used the SMC developed by Prof. Clarke’s

group

— With Bayes statistics analysis

— Software based

Parameters of
earth quake | Generation of Computation of
- Depth - initial wave propagation
- FauIt/\disIocation
AN
Fixed values are
used

34



are implementation

Used the SMC developed by Prof. Clarke’s

group

— Only colored (yellow) ones are replace with ours

Earth

-

guake data

\_/—

Property:

.

Tsunami simulator with
parameter variations

~

4

-

BLTL

\_/-

o

Checker:
checker.cpp

~

-

J

Statistical
analysis:
bngwrap.cpp

\

Sufficiently

tried
— -~ Results

35
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Results (1)

Parameters Test Property A/R  Satisfy All Time[sec]
H, sigma=1% BFT, 0.9, 1000, 1,1 G[1800] ( Z1 < 3.3) R 0 3 149
G[1800] (Z1< 34) R 0 3 149
Earth quake depth G[1800] ( 21 < 35) A 44 44 1635
G[1800] (21 < 3.6) A 44 44 1635
G[1800] ( 21 < 3.7) A 44 44 1635
G[1800] (71 < 3.8) A 44 44 1635
H, sigma=1% BFT, 0.99, 1000, 1, 1 G[1800] ( Z1 < 3.3) R 0 2 74
G[1800] (21 < 34) R 0 2 74
Earth quake depth G[1800] ( 21 < 35) A 239 239 8962
G[1800] (21 < 36) A 239 239 8962
G[1800] ( 21 < 3.7) A 239 239 8962
G[1800] (71 < 38) A 239 239 8962
L, W, sigma=5% BFT, 0.9, 1000, 1,1 G[1800] ( Z1 < 3.3) R 0 3 149
G[1800] (21 < 34) R 0 3 149
Fault/dislocation G[1800] (Z1<35) A 224 237 8865
length and width G[1800] (21 < 3.6) A 44 44 1638
G[1800] ( 21 < 3.7) A 44 44 1638
G[1800] (71 < 38) A 44 44 1638
L, W, sigma=5% BFT, 0.99, 1000, 1, 1 G[1800] ( Z1 < 3.3) R 0 2 717
G[1800] ( Z1< 34) R 4 7 299
Fault/dislocation G[1800] (Z1<35) R 306 319 11927
length and width G[1800] ( Z1 < 3.6) A 239 239 8939
G[1800] ( 21 < 3.7) A 239 239 8939
G[1800] (71 < 38) A 239 239 8939
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Results (2)

Parameters Test Property p Satisfy Al  Time[sec]

H, sigma=1% BEST,0.05,0.9,1,1 G[1800] ( Z1 < 3.3) 0.0434783 0 21 817
(C-H Bound:460) G[1800](Z1<34) 0.0434783 0 21 817

G[1800] (21 <35) 0.956522 21 21 817

G[1800] (21 < 36) 0.956522 21 21 817

G[1800] (21 <3.7) 0.956522 21 21 817

G[1800] (71 < 3.8) 0.956522 21 21 817

L, W, sigma=5% BEST,0.05,0.9,1,1 G[1800] ( Z1 < 3.3) 0.0434783 0 21 796
(C-H Bound:460) G[1800](Z1<34) 0.430189 113 263 9531

G[1800] (21 < 35) 0.956522 21 21 796

G[1800] (21 < 3.6) 0.956522 21 21 796

G[1800] (21 <3.7) 0.956522 21 21 796

G[1800] (21 <3.38) 0.956522 21 21 796

L, W, sigma=5% BEST, 0.01,09,1,1 |G[1800](Z1<3.3) 0.0251177 15 635 23803
(C-H Bound: 11513) G[1800] ( Z1 < 34) 0.424508 2805 6608 249805

G[1800] (21 < 35) 0.96146 947 984 36908

G[1800] (21 < 3.6) 0.991304 113 113 4229

G[1800] (21 < 3.7) 0.991304 113 113 4229

G[1800] (Z1 < 3.8) 0.991304 113 113 4229
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* Main loop of TUNAMI simulation can be 46.0 times
faster

* In case of GPU, 41.5 time acceleration is realized (just for

reference)
Comparison among
| CPU(single core), FPGA, GPU
Host Device 50.0 46.0
memory memory — 45.0 41.5
48[Gbyte] 24[Gbyte] g 40.0
o 350
38[Gbyte/sec] 6 Lo
CPU 2[Gbyte/sec] FPGA § 25.0
Xeon X5650 Virtex6 g 20.0
@2.67GHz SX475T 5 15.0
| T 100
.. FPGA board & 50 1.1
HDD 0.0

Simulation cycle (7200 sec)

N/ LVUV\IVUpN VINY )



How can we speed up statistical model N
checking
* Tsunami simulation can be accelerated with
FPGA/GPU by 40 times or more

— But data transfer speed between FPGA/GPU board
and microprocessor (PCl-e) is not so fast

Acceleration of

Tsunami
simulation inish ?
Tsunami A

height

Checker Statistical

Valid or not analysis
T/F
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Data e A
e Results of Tsunami simulation should be

transferred from FPGA/GPU to host processor
— FPGA = Host: 2Gbyte/sec (by PCl Express bus)

e FPGA-based Tsunami simulation needs:

— 28 byte data / clock cycle (16 byte for input, 12
byte for output)

— Needs 5.6Gbyte/sec @ (200MHz FPGA)

* Considering data transfer, actual acceleration
by FPGA-based implementation is 16 times

40
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Statistical Model Checking

of Tsunami Simulation Results

e SMC of Tsunami simulation can be accelerated
by hardware implementation

— Data transfer can be reduced

— Can fully utilize the acceleration of Tsunami
simulation in SMC

FPGA@Z200MHiz FPGA@Z200MHiz
Initial Wave Initial Wave
Generation Generation —
Tsunami
SMC < Tsunami Statistical l
5.6 GB/sec Analysis only Checker
ired
(required) . T/E
Pass or Falil Pass or Fall

SW implementation of SMC part  HW implementation of (partial) SMC part
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HW Implementation of “checker”
* With FSM for each property

¢ Atime<=t

¢:y~v,
v E {<,>=}

(mPTA—02)

Vtime >t
P, U, >@
¢ 1Atime <=t ¢ 2/\time<=t
¢ y~yv,
v & {<,>,:}

* With model checking of the traces

— LTL formulae can be checked in a bottom up way with linear

time
— Example: F(a->(b U c))
* Check each sub-formula
 Combine in bottom up way

Time 1234567891111

0123
a 0101010111011
b 1110001001111
C 0011110001111
bUc 1111110001111

a>bUc) 1111111001111
Fla->(b Uc)) 1111111111111
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Performance Improvement of SMC of

50
45
40
35
30
25
20
15
10

Tsunami Simulation

Performance improvement compared for SW execution

M Performance

Improvement



Conclusions and on-going works

* Tsunami simulation has been accelerated by
40-45 times

— Space decomposition with GPU
— Time-wise pipelining with FPGA

 Statistical model checking on Tsunami
simulation results

— Could be time consuming with SW only
implementation (15 X speed up)

— By HW implementation of checker, 40X achieved
* Entire HW implementation is on-going

— Target example: Rounding robustness of floating
point computation with Monte Carlo Arithmetic
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