
1

Static Analysis with Goanna

Model checking for large code bases

Ansgar Fehnker

About Us

� R&D spin-out redlizards.com

� 5 years technology research

� Funded and backed by NICTA

2

Mistakes are made

� Even good programmers make

mistakes

� Bugs cost an average company

US$50k per programmer per year (IDC)

� Finding bugs when testing up to 80

times more expensive than finding

them when coding (IDC)

Give Nana and
Misty a ride to
Dr Brown. And
make sure to get
her vaccinated.

Give Nana and
Misty a ride to
Dr Brown. And
make sure to get
her vaccinated.

What We Do

Goanna Static Analysis for C/C++

Inspects code automatically for

� memory corruption and leaks

� software quality issues

� security vulnerabilities

� API rule violation

� coding standards violations

� identifies >100 types of serious defects

Does not execute, but investigate code.

Demo

3

4

Demo

Content

� Use Model Checking for Static Analysis of real code.

� Possible through the use of very coarse abstractions.

� Semantics added (only) if necessary

� Summaries for inter-procedural checking

� Able to find real bugs

5

Under The Hood

Syntactic Model Checking

Syntactical Model Checking

� Discover syntactical structure of program by analysis of AST

� Map the syntactical structure of a program to a finite state model

(Kripke Structure)

� Use temporal logic model checking to check for potential bugs and

deficiencies in the code

transition

system

atomic

propositions

Kripke Structure

+

6

Syntactical Model Checking

Source Code

int main(void) {

int i,a=0;

int *p = (int *)

malloc(sizeof(int));

for (i=1000; i > 0; i--){

a = *p + i;

i = i*2;

…

When
does it
happen

?

Syntactical Model Checking

Source Code

int main(void) {

int i,a=0;

int *p = (int *)

malloc(sizeof(int));

for (i=1000; i > 0; i--){

a = *p + i;

i = i*2;

…

Syntactic Pattern

Temporal Pattern

What
happens?

7

Syntactical Model Checking

Source Code

int main(void) {

int i,a=0;

int *p = (int *)

malloc(sizeof(int));

for (i=1000; i > 0; i--){

a = *p + i;

i = i*2;

…

Automatic

Translation

Model

decl

write

AG decl => A
!use W write

Syntactic Pattern

Temporal Pattern

Syntactical Model Checking

Source Code

int main(void) {

int i,a=0;

int *p = (int *)

malloc(sizeof(int));

for (i=1000; i > 0; i--){

a = *p + i;

i = i*2;

…

Automatic

Translation

Model Checker

Model

decl

write

AG decl => A
!use W write

Syntactic Pattern

Temporal Pattern

8

Syntactical Model Checking

Source Code

int main(void) {

int i,a=0;

int *p = (int *)

malloc(sizeof(int));

for (i=1000; i > 0; i--){

a = *p + i;

i = i*2;

…

Automatic

Translation

Model Checker

Warnings

1 Goanna – Pointer p used a

2 Goanna – Uninitialised va

3 Goanna – Dead Code found

Trace

Line 1 Decl

Line 2 Decl *

Line 3 For-loop

Line 4 Exp *

Model

decl

write

AG decl => A
!use W write

Syntactic Pattern

Temporal Pattern

Example: Uninitialized Variable

int foo(int n) {

int x = 0, y = 1, q, i = 0;

do {

int oldy = y;

y = x;

q = x + oldy;

x = q;

i++;

} while(i < n);

return q;

}

9

Example: Uninitialized Variable

int foo(int n) {

int x = 0, y = 1, q, i = 0;

do {

int oldy = y;

y = x;

q = x + oldy;

x = q;

i++;

} while(i < n);

return q;

}

Annotation

write_q

Annotation

read_q

Annotation

var_q

Annotation

read_q

Example: Uninitialized Variable

int foo(int n) {

int x = 0, y = 1, q, i = 0;

do {

int oldy = y;

y = x;

q = x + oldy;

x = q;

i++;

} while(i < n);

return q;

}

Annotation

write_q

Annotation

read_q

Annotation

var_q

Annotation

read_q

Temporal Specification

Forall var Never read Before write

10

Example: Uninitialized Variable

int foo(int n) {

int x = 0, y = 1, q, i = 0;

do {

int oldy = y;

y = x;

q = x + oldy;

x = q;

i++;

} while(i < n);

return q;

}

Annotation

write_q

Annotation

read_q

Annotation

var_q

Annotation

read_q

Temporal Specification

Forall var Never read Before write

Output

Goanna - analyzing file

Number of functions: 1

Total runtime : 0.01 second

Example: Uninitialized Variable

int foo(int n) {

int x = 0, y = 1, q, i = 0;

do {

int oldy = y;

y = x;

q = x + oldy;

x = q;

i++;

} while(i < n);

return q;

}

Annotation

write_q

Annotation

read_q

Annotation

var_q

Annotation

read_q

Temporal Specification

Forall var Never read Before write

Output

Goanna - analyzing file

Number of functions: 1

Total runtime : 0.01 second

Note

Completely Automatic Analysis

11

Syntactic Model Checking

� Uses a very coarse abstraction.

� Adds syntactic information as labels in Kripke structure

� Translates static analysis problems to CTL

� Uses model checking to analyse resulting model

Advantage: Very flexible

Challenge: Inter-procedural checking

Build

-make

-cmake

-scon

-MSVS

-MSBuild

Languages

& Compilers

-C/C++

-ARM Assembly

-gcc 4.4

-MS Vstudio

Input: Check Queries (Language)

Output: Warnings & Traces

IDE & Tools

-VStudio10

-VStudio08

-VStudio05

-Eclipse
CDT

Warning Manager & Metrics

User Defined Checks/Queries

Goanna Architecture

Model
Generation

Model
Checking

Interval Constraint Solving

Interprocedural Analysis

False Path Elimination

Demo

12

Ongoing Work

Inter-procedural Model Checking

Problem

� Labels are distributed

over functions

� Inlining not an option

� Large models

� Problem with

recursion

� Monolithic

� Example: double free

free free

alloc

AG (free => not (EX E not alloc U free))

13

Solution

� Model programs as Recursive State Machine

� Use 3 valued logic model checking to capture partial information

� Use summaries to avoid inlining

Advantages

� Local analysis

� Partial analysis

� Supports incremental analysis

Related Work

� Analysis of Recursive State Machines

� By Rajeev Alur, Kousha Etessami, Mihalis Yannakakis.

� Model Checking Partial State Spaces with 3-Valued Temporal Logics

� By Glenn Bruns and Patrice Godefroid

� Abstraction refinement for 3-valued-logic analysis

� By Alexey Loginov, Thomas Reps, Mooly Sagiv

� Multi-valued symbolic model-checking

� Marsha Chechik , Benet Devereux, Steve Easterbrook, Arie Gurfinkel

14

Recursive State Machine

� A collection of state machines

� Each state machine may contain states and “boxes”

� States are labelled.

� Each state machine has entry and exit states

� A box points to another state machine

� Can be recursive

� Semantics given by Kripke structure

Recursive State Machine

15

3-valued Kleene Logic

� Extends binary logic with 3rd value: M

� Negation: not T = F, not F = T, not M = M

� x or y =

� T if x = T or y = T,

� F if x = F and y = F

� M otherwise

� x join y =

� T if x = T and y = T,

� F if x = F and y = F

� M otherwise

Summaries

� Given a property Φ of the form EG φ1 or E φ1 U φ2

� External assumption

� The external assumption refers to the caller of a sub-system

� Says whether Φ is assumed to be T, F, or M when system returns

� A summary consists of

� (internal) assumptions

� (internal) guarantees

16

Summaries

� Internal assumption maps

� External assumption to a mapping from boxes to T,F,M

� Internal guarantee maps

� External assumption to a mapping from states to T,F,M

� Assumptions label boxes, guarantees label states

� An assumption refers to guarantees given by callees

� The guarantee to what a caller can assume about the system

� They state whether Φ is T, F, or M

Summaries

assumption

assumption

assumptionassumption

guarantee

guarantee

guarantee

guarantee

17

Example: ΦΦΦΦ = E not alloc U free

internal

assumption

external

assumption

guarantee

guarantee

Assumption
Assumption A1

if extA |= ΦΦΦΦ T M F

then A2 |=Φ T M M

S0

S1

S2

Guarantee A1

if extA |=ΦΦΦΦ T M F

then S0|=Φ M M M

then S1|=Φ T M M

then S2|=Φ T M M

Coherence

� A summary is coherent if the guarantees match the assumptions.

� Matching means that for any external assumption extA

� a state s is labelled T if s |= Φ given the assumptions

� a state s is labelled F if s |≠ Φ given the assumptions

� and is labelled M otherwise

18

Coherence

� A summary is coherent if the guarantees match the assumptions.

� Matching means that for any external assumption extA

� a state s is labelled T if s |= Φ given the assumptions

� a state s is labelled F if s |≠ Φ given the assumptions

� and is labelled M otherwise

� This means for Φ = E φ1 U φ2 or Φ = EG φ1

� s is labelled T if s |= Φ or E φ1 U T
An assumption

that Φ is true

Coherence

� A summary is coherent if the guarantees match the assumptions.

� Matching means that for any external assumption extA

� a state s is labelled T if s |= Φ given the assumptions

� a state s is labelled F if s |≠ Φ given the assumptions

� and is labelled M otherwise

� This means for Φ = E φ1 U φ2 or Φ = EG φ1

� s is labelled T if s |= Φ or E φ1 U T

� s is labelled F if s |= not Φ and not E φ1 U T and not E φ1 U M

An assumption

that Φ is true

An assumption that

Φ might be true

19

Coherence

� A summary is coherent if the guarantees match the assumptions.

� Matching means that for any external assumption extA

� a state s is labelled T if s |= Φ given the assumptions

� a state s is labelled F if s |≠ Φ given the assumptions

� and is labelled M otherwise

� This means for Φ = E φ1 U φ2 or Φ = EG φ1

� s is labelled T if s |= Φ or E φ1 U T

� s is labelled F if s |= not Φ and not E φ1 U T and not E φ1 U M

� and is labelled M otherwise

Example: ΦΦΦΦ = E not alloc U free

internal

assumption

external

assumption

guarantee

guarantee

Assumption
Assumption A1

if extA |= ΦΦΦΦ T M F

then A2 |=Φ T M M

S0

S1

S2

Guarantee A1

if extA |=ΦΦΦΦ T M F

then S0|=Φ M M M

then S1|=Φ T M M

then S2|=Φ T M M

If A2|=ΦΦΦΦ then S0|=ΦΦΦΦ

20

Example: ΦΦΦΦ = E not alloc U free

internal

assumption

external

assumption

guarantee

guarantee

Assumption
Assumption A1

if extA |= ΦΦΦΦ T M F

then A2 |=Φ T M M

S0

S1

S2

Guarantee A1

if extA |=ΦΦΦΦ T M F

then S0|=Φ M M M

then S1|=Φ T M M

then S2|=Φ T M M

If ext A|≠ΦΦΦΦ then S2|≠ΦΦΦΦ

Example: ΦΦΦΦ = E not alloc U free

internal

assumption

external

assumption

guarantee

guarantee

Assumption
Assumption A1

if extA |= ΦΦΦΦ T M F

then A2 |=Φ T M M

S0

S1

S2

Guarantee A1

if extA |=ΦΦΦΦ T M F

then S0|=Φ M M M

then S1|=Φ T M M

then S2|=Φ T M M

If S1|= free then S1|= ΦΦΦΦ

21

Example: ΦΦΦΦ = E not alloc U free

internal

assumption

external

assumption

guarantee

guarantee

Assumption
Assumption A1

if extA |= ΦΦΦΦ T M F

then A2 |=Φ T M M

S0

S1

S2

Guarantee A1

if extA |=ΦΦΦΦ T M F

then S0|=Φ T M M

then S1|=Φ T T T

then S2|=Φ T M FGiven assumptions, use CTL model

checking to make guarantees

coherent.

Consistency

� The summaries for all sub-structures are consistent if the

assumptions match the guarantees

� Matching means that

� given the labelling in the immediate successors of a “box”,

� the labelling of the box (assumption) coincides with that of the

guarantee of the callee.

22

Guarantee A2

if extA |=ΦΦΦΦ T M F

then S0|=Φ T T T

then S1|=Φ T T T

then S2|=Φ T T T

then S3|=Φ T M F

Summary A1

if extA |= ΦΦΦΦ T M F

then S0|=Φ T M M

then A2 |=Φ T M M

then S1|=Φ T T T

then S2|=Φ T M F

S0

S1

S2

S0

S2

S3

S1

If A1,S1|= ΦΦΦΦ is T, then A2,S0|=φφφφ is T

If A2,S0|= ΦΦΦΦ is T, then A1,A2|=φφφφ is T

Example: ΦΦΦΦ = E not alloc U free

Guarantee A2

if extA |=ΦΦΦΦ T M F

then S0|=Φ T T T

then S1|=Φ T T T

then S2|=Φ T T T

then S3|=Φ T M F

Summary A1

if extA |= ΦΦΦΦ T M F

then S0|=Φ T M M

then A2 |=Φ T T T

then S1|=Φ T T T

then S2|=Φ T M F

S0

S1

S2

S0

S2

S3

S1

incoherent

Example: ΦΦΦΦ = E not alloc U free

23

Iterate

Initialise all

summaries

to M

Make all

guarantees

consitent

Decide

remaining M

Consistent?

Make all

assumptions

coherent

Coherent? No

No

Yes

Yes

Deciding Remaining M

Theorem

If all summaries are coherent and consistent then

Case: Φ = EG φ1

� If a state s is labelled M then s|= Φ

Case: Φ = E φ1 U φ2

� If a state s is labelled M then s|≠ Φ

24

Iteration over sub-formulae

� Structural induction over CTL in ENF

� Φ = p | not φ1 | φ1 or φ2 | EX φ1 | EG φ1 | E φ1 U φ2

� Φ holds for the system if the initial state of the initial sub-system is

labelled Φ

� Labelling with temporal operators EX, EG, EG might require to

create a copy of a sub-system

Example: ΦΦΦΦ = E not alloc U free

25

Example: ΦΦΦΦ = E not alloc U free

Summary

� CTL model checking algorithm for recursive state machines

� Linear for each sub-formulae

� Exponential in the number of sub-formulae

� Uses sub-system summaries

� Sub-systems are checked one-by-one

� 3 valued summaries allow for partial evaluation

� Coherence and consistency allow for incremental evaluation

26

Back to Reality

Goanna Results in Practice

Some SATE Results

Static Analysis Tool Exposition (NIST)

� NIST selected 5 code bases for analysis

� NIST selected known CVEs to be found

� NIST selected random warnings for manual evaluation

Goanna SATE participation

� We used the default checks (55 checks)

� Geared towards quality issues, omitted checks for “cosmetic issues”

� “Sanity” assumption

27

Some SATE Results

PTR: Pointer misuse
RED: Redundant code
SPC: Unspecified behavior

Top10Number of Warnings

Demo

SEM-const-call

� Semantic attributes are a GNU language extension
� uni_ucs4_to_titlecase has __attribute__ ((const)))

(see unichar.h)
� uint16_find has not
� GNU says: “(...) a function that calls a non-const function usually must

not be const“

unichar_t uni_ucs4_to_titlecase(unichar_t chr)

{ (…)

if (!uint16_find(titlecase16_keys,

N_ELEMENTS(titlecase16_keys), chr, &idx))

return chr; (…)

unichar.c:193: warning: Goanna[SEM-const-call] Non-const function
`uint16_find' is called in const function `uni_ucs4_to_titlecase'

28

RED-cmp-never

� director_args_parse_ip_port() only returns TRUE or FALSE

� director_args_parse_ip_port()<0 never true
� ip and port might not be assigned, but this failure is not detected

if (str_array_length(args) != 2 ||

director_args_parse_ip_port(conn, args, &ip, &port) < 0) {

i_error("director(%s): Invalid CONNECT args", conn->name);

return FALSE;

}

director-connection.c:655: warning: Goanna[RED-cmp-never]
Comparison never holds

PTR-null-assign-fun-pos

� director_get_preferred_right_host might NULL
� director_connect_host dereferences preferred_host

� Potential NULL deref

static void director_reconnect_timeout(struct director *dir){

struct director_host *cur_host,

*preferred_host = director_get_preferred_right_host(dir);

(…)

if (cur_host != preferred_host)

(void)director_connect_host(dir, preferred_host);

else {(…)}

}

director.c 180: warning: Goanna[PTR-null-assign-fun-pos] Dereference of
`preferred_host' which may be NULL

29

Other Things

PROP uninitialised_var

FORALL var IN var_decl()

ALWAYS write(var) STRICTLY BEFORE read(var)

USER LANGUAGE

Metrics

Distributed Build

Summary

� Goanna is a static analysis solution for C/C++

� Desktop and server version available at redlizards.com

� It uses a combination of model checking and static analysis to find

serious bugs in real code

� It finds serious bugs in real code

� It is named after a bug-eating lizard

30

Goanna at work

Next 500 MLoC

