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How Cells Process Information

http://en.wikipedia.org/wiki/Cell_signaling

Environment
Hormones, growth factors, etc.

Receptors

Nucleus



Architecture of a signaling network

Yarden & Sliwkowski, Nature Rev. Mol. Cell Biol. 02: 127-137 (2001).



Mutation of Ras Can Produce a 

Tumor Cell

Normal Transformed



Ras mutations in cancer

The Biology of Cancer (© Garland Science 2007)

Ras

>20% human tumors 

carry Ras point 

mutations.

>90% in pancreatic 

cancer. 



Figure 6.10a The Biology of Cancer (© Garland Science 2007)

Modularity of Signaling Proteins



Modularity produces complex 

wiring



Figure 6.9 The Biology of Cancer (© Garland Science 2007)

Complexity of Receptor Complexes



The “curse” of complexity
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AIM: Model the biochemical machinery by which cells 

process information (and respond to it).

Representation Simulation

Modeling cell signaling

BIONETGEN Language

kappa

etc.

ODE, PDE

Stochastic Simulation Algorithm

Kinetic Monte Carlo

Brownian dynamics



 

Syk activation model

Mol. Immunol.,2002

J. Immunol., 2003

Key variables

• ligand properties

• protein expression levels

• multiple Lyn-FceRI interactions

• transphosphorylation



Defining Molecules

IgE(a,a)

FceRI(a,b~U~P,g2~U~P)

Lyn(U,SH2)

Syk(tSH2,lY~U~P,aY~U~P)

BIONETGEN Language



Defining Interaction Rules

IgE(a,a)+ FceRI(a)<-> IgE(a,a!1).FceRI(a!1)

… 

BIONETGEN Language

binding and dissociation

Transphosphorylation

component state change

Lyn(U!1).FceRI(b!1).FceRI(b~U)-> \

Lyn(U!1).FceRI(b!1).FceRI(b~P)   



Rule-based modeling protocol

Objects and 

rules

BIONETGEN

Reaction 

Network

ODE Solver

Stochastic 

Simulator 

(Gillespie)

Output

http://bionetgen.org

“Normal Cell”

“Mutants”

x x



BIONETGEN Editor - BiNGE

Yao Sun and Liz Marai, U. Pitt Computer Science



BIONETGEN Editor - BiNGE



BIONETGEN Editor - BiNGE



 

Limits of the network generation 

approach

 Extending model to include 

Lyn regulation results in 

>20,000 species.



Kohn‟s Wiring Diagram for the Cell

Kohn, Molecular Biology of the Cell 1999



NFSIM

“Network-Free” Stochastic Simulator

• Generalization of rule-

based kinetic Monte Carlo 

method of Yang et al.

• Particle-based method 

avoids combinatorial 

explosion

• Gillespie-based 

simulations capture 

stochastic effects

Sneddon, Faeder, and Emonet, in preparation.



Integration with BIONETGEN

 



Subway Map of Cell Signaling

Hanahan and Weinberg, 2000

Richard Posner

Daniel van Hoff

…



Rule-based Model of EGFR 

Signaling
Preliminary Model: 20 molecules / 532 rules / 496 parameters

Matt Creamer and Rich Posner



Stats

Model

• 20 Molecule Types
– 4 Receptors

– 3 Ligands

• 536 Parameters

• 547 Reaction Rules

Simulation

1500 sim sec 

• ~10-18 million events

• ~ 1060 real sec

~ 6e-5 CPU seconds/event

(On a 2.4 GHz Intel Core2Duo on 
iMac with 4 GB RAM)



Visual Annotation of the Model

Grb2

PTP1B

Sos Gab1
Shc PI3K

RasGAP

Ras

Extracellular 

Space

Cytoplasm

Grb2
GD
P

GTP
PI3K

PI3K



Model Validation

John Sekar



Model Validation

John Sekar

Basal activity is too high!



Stop # 2: TGF-β Pathway

Cell cycle 

model also 

under 

development



The Path Ahead

 Continue to build and analyze models of key 
pathways

 Systematic investigation of models using
◦ Statistical and Bayesian Model Checking

◦ Global parameter sensitivity analysis

◦ Parameter estimation and synthesis

 Integration of pathway models

 Model reduction
◦ Coarse-graining of detailed models (bottom up)

◦ Comparison / Mapping to logical models (top 
down)



The Path Ahead

 Continue to build and analyze models of key 
pathways

 Systematic investigation of models using
◦ Statistical and Bayesian Model Checking

◦ Global parameter sensitivity analysis

◦ Parameter estimation and synthesis

 Integration of pathway models

 Model reduction
◦ Coarse-graining of detailed models (bottom up)

◦ Comparison / Mapping to logical models (top 
down)

Can Abstract Interpretation provide powerful new 

approaches to this problem? Danos, Feret and colleagues



Boolean networks

 The state of an element in the signaling network 
can be described by a Boolean variable, expressing 
that it is:
◦ Active or present (on or „1‟) 

◦ Inactive or absent (off or „0‟)

 Boolean functions:
◦ Represent interactions between elements

◦ The state of an element is calculated from states of other 
elements

 Practical advantages
◦ No parameters – facilitates model development

◦ Easy to understand – facilitates collaboration



Model development protocol



Logical modeling - example

x1(t+1) = x2(t) or x3(t)
x2(t+1) = not x1(t) and x3(t)
x3(t+1) = x1 (t) and not x3(t)

Biological network Boolean network

X1

X3

X2

p1

p2

p3

Proteins: p1, p2, p3

Protein  states: x1, x2, x3



Logical modeling - example

• x1x2x3 – state vector

state x1(t)x2(t)x3(t) x1(t+1)x2(t+1)x3(t+1)

s1 000 000

s2 001 110

s3 010 100

s4 011 110

s5 100 001

s6 101 100

s7 110 101

s8 111 100

X1

X3

X2

x1(t+1) = x2(t) or x3(t)
x2(t+1) = not x1(t) and x3(t)
x3(t+1) = x1 (t) and not x3(t)

x1

x2

x3

Boolean network Logic circuit network State transition table



Logical modeling - example

X1

X3

X2

x1(t+1) = x2(t) or x3(t)
x2(t+1) = not x1(t) and x3(t)
x3(t+1) = x1 (t) and not x3(t)

x1

x2

x3

S1

S2

S6

S8

S7

S3

S5

S4

State transition diagramBoolean network Logic circuit network



Logical modeling - example

• A sequence of connected states forms a trajectory of the system

• The number of states and the number of trajectories in the state space are finite

• All initial states of a trajectory will eventually reach a steady state or a state cycle

S1

S2

S6

S8

S7

S3

S5

S4

Attractors

Point attractor

Dynamic attractor

state x1x2x3

s1 000

s2 001

s3 010

s4 011

s5 100

s6 101

s7 110

s8 111

p1

p2

p3



Synchronous vs. asynchronous updates

000

001

101

111

110

010

100

011

000

001

101 011

111

010
100

110

state x1x2x3

s1 000

s2 001

s3 010

s4 011

s5 100

s6 101

s7 110

s8 111

Synchronous updates Asynchronous updates
p1

p2

p3

x1(t+1) = x2(t) or x3(t)
x2(t+1) = not x1(t) and x3(t)
x3(t+1) = x1 (t) and not x3(t)



Regulatory graph for mammalian cell 
cycle network

Source: Faure et al., Bioinformatics, 2006.



Logical rules 

Source: Faure et al., Bioinformatics, 2006.



Updating approaches

synchronous mixedasynchronous

Source: Faure et al., Bioinformatics, 2006.



Vision

 Logical models of subway map 

components

 Begin with cell cycle models and link with 

other regulatory pathways connected to 

receptor signaling

 Basis for both simulation and formal 

analysis

 Complement to reaction network models 

being developed with TGEN collaborators
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http://bionetgen.org
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Thank You!

Photo by John 
Sekar


