
Using “concolic” testing to find bugs in python code

(Work in progress)
Samir Sapra, Sagar Chaki, Arie Gurfinkel, Edmund Clarke

Carnegie Mellon University

NSF Expeditions in Computing

Introduction

The most expensive phase of software development is testing, often
consuming over half the budget of a software project. A study by
NIST [1] has estimated that software defects cost $60 billion a year in
the U.S. economy alone. Unfortunately, test generation is a
traditionally manual process.

Recent work on "concolic testing" has alleviated this problem, for
languages like C and Java. Tools in this area include JPF-SE [2],
DART [3], CUTE [4], jCUTE [5], CREST, KLEE [6], EXE [7], Pex [8]
and SAGE [9].

However, an increasing amount of software is now being written in
so-called scripting/interpreted languages like python. Our work
seeks to extend to these languages the benefits of "concolic testing."

The term "concolic" derives from the fact that the technique is a
hybrid of concrete and symbolic testing. Some authors refer to
concolic testing as explicit path model checking.

Why study concolic testing?

 Unlike traditional testing, concolic testing is automated.

 Unlike random automated testing, concolic testing is able to use

fewer inputs to achieve greater branch coverage.

 Concolic testing takes advantage of SMT solvers. With recent and
continuing improvements in these solvers, concolic testing tools
gain the ability to handle more and more complex programs.

 Given a program with types and data structures that are too
complex, many formal verification techniques will simply not
handle them. Concolic testing "degrades gracefully" by falling
back to concrete execution where it can't reason symbolically.

Limitations

Concolic testing is not able to take advantage of human insight
into the software under test, in the manner that a manual tester
would be able to.

Unlike formal verification techniques, concolic testing does not
strive for completeness. Since it is a testing technique, its goal is
to reach error locations in a program, not to certify the absence of
bugs.

Overview of concolic testing

Concolic testing repeatedly runs a given program, each time with
different inputs. The goal is to cover as many branches of execution
as possible, with the ultimate goal of bringing the program to an
error state.

#1) For its initial stage, a concolic testing algorithm is usually

"seeded" with a concrete execution of the program. (This may
possibly be done by feeding random inputs.)
Given the initial concrete execution, the tool computes, for each
program point, the symbolic state of the program at that point.

The symbolic state at a program point includes:
 Program Counter
 Symbolic values of the various variables of the program
 Path condition (described below) that must be satisfied for

program execution to reach this point.

The path condition is a quantifier-free formula (in some theory)
over the variables of the program. The path condition determines
execution path: an instantiation of program variables results in a
given execution path iff that instantiation satisfies the path
constraint.

For example, for inputs x = 3, y = 2, the resulting concrete execution is
highlighted below

1: if (x > y):

2: if (y > 0):

3: return 0

4: else:

5: assert(False)

and the path condition at line 3 is (x0 > y0) AND (y0 > 0)

#2) After a concrete execution completes, one of the path

constraints is negated, and the result is sent to an SMT solver.
The SMT solver will return a model that forces execution along
some other path.

In our example, negating a constraint might give (x0 > y0) AND (y0 <= 0)

for which the SMT solver might return x0 = 1, y0 = -1

#3) Step 1 is repeated. In our case we have found a bug!

1: if (x > y):

2: if (y > 0):

3: return 0

4: else:

5: assert(False)

 When the symbolic constraints are too complex for the SMT
solver, the concolic tool replaces some symbols with concrete
values.

 Branch exploration can continue indefinitely! Most tools use
bounded depth-first search.

Current Stage

We have designed an initial concolic testing algorithm to handle
basic python features. Our next steps are to refine it and begin
implementing it so as to gain practical experience with it.

Observations & Challenges

By far the most significant challenge is python's dynamic type
system. For example:

 Types for function arguments typically are not known until run-

time
 A variable may point to an object of one type, but may then later

be re-assigned to point to an object of another type.
 Classes may be created dynamically, and objects may add fields

at run-time
 The exec() function allows an input string to be executed as

python code

Literature Cited

1. The economic impacts of inadequate infrastructure for software testing.

National Institute of Standards and Technology, Planning Report 02-3, May
2002.

2. S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: a symbolic execution
extension to Java PathFinder. In TACAS'07, 2007.

3. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random
Testing. In PLDI'05, June 2005.

4. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C.
In ESEC/FSE'05, Sep 2005.

5. K. Sen and G. Agha. CUTE and jCUTE : Concolic unit testing and explicit
path model-checking tools. In CAV'06, 2006.

6. C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI'08, Dec 2008.

7. C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE:
Automatically generating inputs of death. In CCS'06, Oct--Nov 2006.

8. N. Tillmann and J. de Halleux. Pex - white box test generation for .NET. In
TAP'08, Apr 2008.

9. P. Godefroid, M. Levin, and D. Molnar. Automated Whitebox Fuzz Testing.
In NDSS'08, Feb. 2008.

