Intro Encoding Robustne Solving Correctne

Delta-Complete Reachability Analysis

Sicun(Sean) Gao

(Joint work with Ed Clarke and Jeremy Avigad)

Carnegie Mellon University

Apr 22, 2011

Hybrid Systems

Intro

Encoding Robustness Solving

End

- $\mathcal{H} = \langle X, Q, Init, Flow, Jump, Inv \rangle$
 - $X \subseteq \mathbb{R}^k$: state space
 - Q: a finite set of modes
 - $Init \subseteq Q \times X$: initial configurations
 - $Flow :\subseteq Q \times X \to TX$: continuous flows
 - $Jump :\subseteq Q \times X \to 2^{Q \times X}$: discrete jumps

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• $Inv \subseteq Q \times X$: invariants in each mode

Given $Unsafe \subseteq \mathbb{R}^k \times Q$, $\llbracket \mathcal{H} \rrbracket \cap Unsafe = \emptyset$?

Example

Intro

Encoding Robustness Solving Correctness End

Example (Transmission Controller)

- $X = \mathbb{R}^3$ (v: Speed, Th: Throttle, Fr: Friction)
- $Q = \{q_1, q_2, q_3\}$ (Gears)

•
$$Init = (q_1, Th = 0.2 \land v = 0)$$

- $Inv_{q_1}: 0 \le v \le 30$, $Inv_{q_2}: 25 \le v \le 50$, $Inv_{q_3}: 45 \le v \le 70$. ■ $Flow_{q_i}: \frac{dv}{dt} = c_i(a_iTh - b_iFr) \land \frac{dFr}{dt} = e_iv^2$.
- $\quad Jump_{q_1,q_2}: (v \ge 20 \land Th > 0.6 \land v' = v \land Th' = Th), \text{ etc.}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Is $(q_2, Th = 0.1 \land v < 30)$ reachable?

Hybrid System Verification is Hard.

Intro

- Encoding
- Robustnes
- Solving
- Correctness
- End

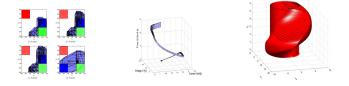
- Although there are successful examples, most of the practical systems can not be handled.
- Main Approaches:
 - Geometric Methods
 - **1** Over-estimate $\llbracket H \rrbracket$ up to some time bound t.
 - 2 Check if $\llbracket H \rrbracket^{<t} \cap Unsafe = \emptyset$.
 - Proof-theoretic Methods
 - 1 Show that $\Phi(\mathcal{H}) \vdash \neg Unsafe$ is derivable syntactically in a sound axiomatic system.

うして ふゆ く は く は く む く し く

Geometric Methods

Pros:

- Computations can be made visible.
- Very helpful for the general understanding of behavior. Cons:
 - High complexity; error control is hard.
 - Hard to handle complex dynamics or high dimensions.
 - Hard to handle logical operations.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intro

Encoding Robustness Solving Correctness End

Proof-theoretic Approaches

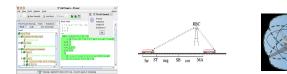
Pros:

- Highly complex systems/properties.
- Reliable answers.
- No bounds on variables.

Cons:

- Not for debugging.
- Finding invariants needs much human insight.
- Underlying decision procedures can be hard to scale.

・ロト ・ 四ト ・ 日ト ・ 日



Intro

Encoding

Solving

End

Stepping Back

Intro

- Encoding Robustnes Solving
- Correctness
- End

What made traditional model checking scale?

- Encode verification problems into logic formulas.
 - \blacksquare View $\langle X, \rightarrow \rangle$ as a logical structure.
 - Encode properties of interest as a temporal/propositional formula φ.
- Check *satisfiability* of formulas using highly efficient solvers.
 - ⟨X,→⟩ ⊨ φ?
 Use BDD/SAT/SMT solvers to find a model of φ.

うして ふゆ く は く は く む く し く

Comparison: debugging information, flexible; not visible, bounded

Model-theoretic Methods (Discrete Systems)

Let \mathcal{M} denote the transition system $\langle X, \to \rangle$. Bounded Reachability Encoding n-1 $\mathcal{M} \models \exists \vec{x}_0, ..., \vec{x}_n(Init(\vec{x}_0) \land \bigwedge Trans(\vec{x}_i, \vec{x}_{i+1}) \land Target(\vec{x}_n))?$ Reachable Set Computation $\llbracket \exists \vec{x}_0, ..., \vec{x}_{n-1}(Init(\vec{x}_0) \land \bigwedge Trans(\vec{x}_i, \vec{x}_{i+1})) \rrbracket^{\mathcal{M}} = ?$ i=0Synthesis Problems n-1 $\llbracket \forall \vec{x}_0, ..., \vec{x}_n(Init(\vec{x}_0) \land \bigwedge Control(\vec{x}_i, \vec{x}_{i+1}, \vec{u}_i) \land$ $Target(\vec{x}_n)) \mathbb{I}^{\mathcal{M}} = ?$ i=0

・ロト ・ 同 ・ ・ ヨ ト ・ ヨ ・ うへつ

Intro

Encoding

Robustness Solving Correctness End Logical encoding is not limited to discrete systems.

- Continuous Dynamics: $\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t), t)$ • The solution curve: $\alpha : \mathbb{R} \to X, \ \alpha(t) = \alpha(0) + \int_0^t \vec{f}(\alpha(s), s) ds.$
 - Define the predicate $\llbracket Flow_f(\vec{x}_0, \vec{x}, t) \rrbracket^{\mathcal{M}} = \{ (\vec{x}_0, \vec{x}, t) : \alpha(0) = \vec{x}_0, \alpha(t) = \vec{x} \}$

うして ふゆ く は く は く む く し く

Reachability

 $\mathcal{M} \models \exists \vec{x}_0, t, \vec{x} \; (Init(\vec{x}_0) \land Flow_f(\vec{x}, \vec{x}_0, t) \land Target(\vec{x})) \; ?$

Model-theoretic Methods (Hybrid Systems)

Combine the discrete and continuous components¹:

• $Reach^0_{q_0 \to q_0}(\vec{x}):$

 $\exists t_0 \exists \vec{x}_0 \ (Inv_{q_0}(\vec{x}_0) \land Inv_{q_0}(\vec{x}) \land Flow_{q_0}(\vec{x}, \vec{x}_0, t_0))$

• $Reach_{q_0 \to q}^{n+1}(\vec{x})$:

$$\begin{split} \exists t_{n+1} \exists \vec{x}_{n+1} \exists \vec{x}'_{n+1} \\ \bigvee_{q' \in Q} [Reach^n_{q_0 \to q'}(\vec{x}_{n+1}) \land Jump_{q' \to q}(\vec{x}_{n+1}, \vec{x}'_{n+1}) \\ \land Flow_q(\vec{x}, \vec{x}'_{n+1}, t_{n+1}) \land Inv_q(\vec{x}') \land Inv_q(\vec{x}'_{n+1})] \end{split}$$

 $\mathcal{H} \models Reach_{q_0 \to q}^{n+1}(\vec{x}) \land Unsafe(\vec{x})?$

Intro Encoding

Robustness Solving Correctnes

Assumption: In each location, the flow stays within the invariant before any jump. A

Decision Procedures over Reals

Intro Encoding Robustness Solving Correctness Sadly, in general those first-order formulas over $\mathbb R$ can never be decided.

- The arithmetic theory (×/+) is decidable but highly complex (double-exponential, PSPACE).
 - Available solvers: Usually hard to scale to more than 10 variables.

うして ふゆ く は く は く む く し く

- Handling nontrivial systems will involve (in the *Flow* predicate) exp, sin / cos, *ODEs*, ...
 - Wildly undecidable.

Allowing Errors

Intro Encoding **Robustness** Solving Correctness End

On the other hand, large systems of real equalities/inequalities/ODEs are routinely solved numerically.

• They are perfect for simulation, but always regarded inappropriate for verification.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

■ (Platzer and Clarke, HSCC 2008)

■ Is there a way of using them still?

Allowing Errors

Decide

Robustness

$$\exists \vec{x}. f(\vec{x}) = 0 \land g(\vec{x}) = 0.$$

- Symbolically: We need to consider the global algebraic properties of *f* and *g*.
 - Numerically: We use iterations that only involve local evaluations of *f* and *g* (and their derivatives).
 - With error bound δ , we'd "numerically" decide:

 $\exists \vec{x}. |f(\vec{x})| < \delta \land |g(\vec{x})| < \delta.$

うして ふゆ く は く は く む く し く

Robust Formulas

Consider any formula

Intro Encoding Robustness Solving Correctness End

$$\varphi := \exists^{I_{\vec{x}}} \vec{x} . \bigvee (\bigwedge_{i} f_i(\vec{x}) = 0 \land \bigwedge_{j} g_j(\vec{x}) \neq 0)$$

Define its δ -perturbed form

$$\varphi^{\delta} := \exists^{I_{\vec{x}}} \vec{x}. \bigvee (\bigwedge_{i} f_{i}(\vec{x}) < \delta \land \bigwedge_{j} g_{j}(\vec{x}) \ge \delta)$$

We say φ is δ -robust iff

$$\varphi \leftrightarrow \varphi^{\delta}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Robust Formulas (Decidability)

Robust formulas have very nice computational properties.

Definition

Robustness Solving Correctness End

$\mathbb{R}_{\mathcal{F}} = \langle \mathbb{R}, \mathcal{F}, \langle \rangle$ where \mathcal{F} is the set of all real-computable functions. (Type-II computability; exp, sin, ODEs...)

Let φ be a robust and bounded sentence (arbitrary quantification):

Theorem

 $\mathbb{R}_{\mathcal{F}} \models \varphi \text{ is decidable.}$

The proof simulates cylindrical decomposition.

Robust Formulas (Complexity)

Intro Encoding **Robustness** Solving Correctness End In particular, if φ is existentially quantified:

Theorem

If $\mathcal{F}|\varphi$ is real-computable in complexity class \mathcal{C} , then deciding φ is in $NP^{\mathcal{C}}$.

This means:

Corollary

Deciding robust bounded existential sentences

1 in $\mathcal{L}_{+,\times,\exp,\sin}$ is NP-complete.

2 in $\mathcal{L}_{LipschitzODE}$ is PSPACE-complete.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Not Just in Theory

Intro Encoding Robustness Solving Correctness End We are developing the practical SMT solver dReal.

■ DPLL(T) + Interval Constraint Propagation.

 SAT solver handles Boolean skeleton, ICP handles systems of equations (scalable to 10³ variables).

うして ふゆ く は く は く む く し く

Currently solvable signature: +/×, exp, sin
 (Gao et al. FMCAD2010)

■ In progress: (numerically stable) nonlinear ODEs

Interval Constraint Propagation

Intro Encoding Robustness Solving Correctness End

■ Interval Arithmetic + Constraint Solving

Example

Solve
$$\{x = y, x^2 = y\}$$
 for $x \in [1, 4]$ and $y \in [1, 5]$:
 $I^x : [1, 4] \to [1, \sqrt{5}] \to [1, \sqrt[4]{5}] \to [1, \sqrt[8]{5}] \to [1, \sqrt[16]{5}] \to \cdots \to [\mathbf{1}, \mathbf{1}]$
 $I^y : [1, 5] \to [1, \sqrt{5}] \to [1, \sqrt[4]{5}] \to [1, \sqrt[8]{5}] \to [1, \sqrt[16]{5}] \to \cdots \to [\mathbf{1}, \mathbf{1}]$

• ICP routinely handles thousands of variables and highly nonlinear constraints.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Correctness Guarantee (Formula)

Intro Encoding Robustness Solving **Correctness** End For any existential formula φ (robust or nonrobust), with a tunable error bound δ , we know:

- **1** Solver says "unsat" $\Rightarrow \varphi$ is δ -robustly unsatisfiable.
 - Unsatisfiable under any perturbation up to δ .
- 2 Solver says "sat" $\Rightarrow \varphi$ may be unsatisfiable, but φ^{δ} is satisfiable.
 - It means we do know that a syntactically-perturbed version of $\varphi(\vec{x})$ is satisfiable.

This is what we call δ -completeness.

Robust Hybrid Systems

Intro Encoding Robustness Solving Correctness

Let $\mathcal{H} = \langle X, Q, Init, Flow, Jump, Inv \rangle$.

Similarly, we can define δ -robust hybrid systems: $\mathcal{H}^{\delta} = \langle X, Q, Init^{\delta}, Flow^{\delta}, Jump^{\delta}, Inv^{\delta} \rangle$

• \mathcal{H} is δ -robust if

$$\mathcal{H} \sim_{\sigma.bisim} \mathcal{H}^{\delta}$$

Delta-Complete Bounded Model Checking

Intro Encoding Robustness Solving **Correctness** End When model checking \mathcal{H} :

 $\varphi: Reach_{\mathcal{H}}^{\leq n}$ is unsat $\Leftrightarrow \mathcal{H}$ is safe up to n

φ is "unsat" ⇒ *H* is δ-robustly safe.
 H^{c̄} is safe under any δ-perturbation *c̄*.

2 φ is "sat" ⇒ ∃ δ-perturbation c, H^c is unsafe.
The solver returns a solution that shows bug.

This is even better than precise solvers!

Delta-Complete Bounded Model Checking

Pros:

Highly scalable numerical algorithms and SAT solvers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Possible to scale to complex dynamics and large dimensions
- No accumulation of numerical errors
- Strong robustness check
- Counterexamples

Cons:

- Bounded variables (can be very loose)
- Bounded unwinding depth
- Computations are not visible
- Debugging, not verifying (yet!)

- Robustness Solving Correctness
- End

Conclusion

Intro Encoding Robustness Solving Correctness End

- Standard model checking techniques (from HW/SW) can be used in realistic continuous/hybrid systems, as long as we have the solver.
- For any solver to scale in this domain, numerical methods have to be exploited.
- Surprisingly, numerical methods will give us stronger results.
- We are developing dReal and dReach.

"Errors are good (if they work for the verification side)."

うして ふゆ く は く は く む く し く