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(trains that aren’t even really traveling on the map) 



A-train 





http://en.wikipedia.org/wiki/Cell_signaling 

Environment 
Hormones, growth factors, etc. 

Receptors 

Nucleus 



Yarden & Sliwkowski, Nature Rev. Mol. Cell Biol.  02: 127-137 (2001). 



Normal Transformed 



 The Biology of Cancer (© Garland Science 2007) 

Ras 

>20% human tumors 
carry Ras point 
mutations. 

>90% in pancreatic 
cancer.  



Figure 6.10a  The Biology of Cancer (© Garland Science 2007) 





Figure 6.9  The Biology of Cancer (© Garland Science 2007) 
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AIM: Model the biochemical machinery by which cells 
process information (and respond to it). 

Representation Simulation 

BIONETGEN Language 
kappa 
etc. 

ODE, PDE 
Stochastic Simulation Algorithm 
Kinetic Monte Carlo 
Brownian dynamics 



 
Mol. Immunol.,2002 
J. Immunol., 2003 

Key variables 
•  ligand properties 
•  protein expression levels 
•  multiple Lyn-FceRI interactions 
•  transphosphorylation 



IgE(a,a)

FceRI(a,b~U~P,g2~U~P)

Lyn(U,SH2)

Syk(tSH2,lY~U~P,aY~U~P)


BIONETGEN Language 



IgE(a,a)+ FceRI(a)<-> IgE(a,a!1).FceRI(a!1)

… 


BIONETGEN Language 

binding and dissociation 

Transphosphorylation 

component state change 

Lyn(U!1).FceRI(b!1).FceRI(b~U)-> \

Lyn(U!1).FceRI(b!1).FceRI(b~P)   




Objects and 
rules 

BIONETGEN 
Reaction 
Network 

ODE Solver 

Stochastic 
Simulator 
(Gillespie) 

Output 

http://bionetgen.org 

“Normal Cell” 

“Mutants” 
x x 



Yao Sun and Liz Marai, U. Pitt Computer Science 









 

 Extending model to include 
Lyn regulation results in 
>20,000 species. 



 Extending model to include 
Lyn regulation results in 
>20,000 species. 

 LAT may form large 
oligomers under 
physiological conditions. 

Houtman et al., Nat. Struct. Mol. 
Biol. (2006)

Nag et al., Biophys. J. (2009)




 Extending model to include 
Lyn regulation results in 
>20,000 species. 

 LAT may form large 
oligomers under 
physiological conditions. 

 Many more components are 
still missing. Networks can 
easily reach “Avogadro limit” 



Population 
  Each species is 

enumerated 

Particles 
  Molecules are 

instantiated 

1.  A 
2.  B 
3.  C 
4.  AB 
5.  BC 
6.  ABC 

1.  A 
2.  A 
3.  B 
4.  B 
5.  B 
6.  C 
7.  C 
8.  C 



Population 
  Each species is 

enumerated 
  Configuration is 

vector of populations 

Particles 
  Molecules are 

instantiated 
  Configuration is 

complex data struct 

1.  A   1 
2.  B   2 
3.  C   3 
4.  AB   1 
5.  BC   0 
6.  ABC   0 

1.  A 
2.  A  4 
3.  B   
4.  B  2 
5.  B 
6.  C 
7.  C 
8.  C 

bond  
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Population 
  Each species is 

enumerated 
  Configuration is 

vector of populations 
  Update dependencies 

can be precomputed 
  Single particles 

cannot be tracked 

Particles 
  Molecules are 

instantiated 
  Configuration is 

complex data struct 
  Update dependencies 

computed on-the-fly 
  Single particles can 

be tracked  

Combinatorial complexity can 
make population-based 
simulations intractable! 



NFSIM 
“Network-Free” Stochastic Simulator 

•  Generalization of rule-
based kMC method of Yang 
et al. 

•  Uses Gillespie (direct) 
algorithm to sample over 
reaction rules. 

•  Like BKL ‘n-fold method’:  
  sites are instantiated 
  rule-based 
  transformations may 

affect reactivity of  
neighbor sites (in 
Gillespie, updates are 
static) 

Sneddon, Faeder, and Emonet, in preparation. 



NFSIM Algorithm 

25 s-1 

10 s-1 

0.1 s-1 

0.  Initialize reactant 
lists and calculate 
rule propensities. 

1.  Select next 
reaction time and 
next rule. 

2.  Select molecules 
and sites to react. 
a.  Check any 

application 
condition(s). 

3.  Apply operation 
specified by rule. 

4.  Update reactant 
lists and 
propensities. 

5.  Increment time. 
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NFSIM Core Simulator Features 

1)  Modular C++ code base and highly efficient 
implementation 

2)  Operates seamlessly with BIONETGEN 

3)  Extended BIONETGEN Language handles 
1)  Spatial compartments 
2)  System variables in rate law expressions 

cooperative 
receptor 
interactions MethLevel(x) = 1*R1(x)+2*R2(x)+    



3*R3(x)+4*R4(x)+5*R5(x)+6*R6(x)+

7*R7(x)+8*R8(x)




Multi-site Phosphorylation  

begin molecule types 
  Kinase(s) 
  Phosphatase(s) 
  Prot(p~U~P,p~U~P,p~U~P) 
end molecule types 

begin reaction rules 
  Kinase(s) + Prot(p~U) <-> Kinase(s!1).Prot(p~U!1) 
  Kinase(s!1).Prot(p~U!1) -> Kinase(s) + Prot(p~P) 
  … 
end reaction rules 

begin observables 
  Molecules   Prot-P    Prot(p~P,p~U,p~U) 
  Molecules   Prot-P    Prot(p~P,p~P,p~U) 
  Molecules   Prot-P    Prot(p~P,p~P,p~P) 
end observables 

BioNetGen Language [2] 

Michael Sneddon and Thierry Emonet 



Multi-site Phosphorylation 

Not possible with 
ODEs or SSA! 

Michael Sneddon and Thierry Emonet 



 



Hanahan and Weinberg, 2000 

Richard Posner 
Daniel van Hoff 
… 



Preliminary Model: 20 molecules / 532 rules / 496 parameters 

Matt Creamer and Rich Posner 



Stats 

Model 

•  20 Molecule Types 
–  4 Receptors 
–  3 Ligands 

•  536 Parameters 

•  547 Reac>on Rules 

Simula,on 

1500 sim sec  

•  ~10‐18 million events 
•  ~ 1060 real sec 
~ 6e‐5 CPU seconds/event 
(On a 2.4 GHz Intel Core2Duo on 

iMac with 4 GB RAM) 
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Basal activity is too high! 



Cell cycle 
model also 
under 
development 



 Continue to build and analyze models of key 
pathways 

  Systematic investigation of models using 
◦  Statistical and Bayesian Model Checking 
◦  Global parameter sensitivity analysis 
◦  Parameter estimation and synthesis 

  Integration of pathway models 
 Model reduction 
◦  Coarse-graining of detailed models (bottom up) 
◦  Comparison / Mapping to logical models (top 

down) 



LANL 
Byron Goldstein 
William Hlavacek 
Bin Hu 
Michael Monine 
Fangping Mu 
Ambarish Nag 
Jin Yang 

$$ LDRD 
$$ NIH 

http://bionetgen.org 

UConn 
Michael Blinov 

FaederLab 
Leonard Harris 
Natasa Miskov-Zivanov 
Justin Hogg 
Jintao Liu 
John Sekar 

$$ NSF 

$$ NIH 

TGen 
Rich Posner 
Matthew Creamer 
Josh Colvin 
Daniel Von Hoff 

CMU 
Ed Clarke 
Sumit Jha 
Haijun Gong 
Chris Langmead 

Yale 
Thierry Emonet 
Michael Sneddon 

Pitt 
Liz Marai 
Yao Sun 
Carlos Camacho 
Yoram Vodovotz 

$$ PITT-
DCB 



Thank You! 

Photo by John 
Sekar 


