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Outline

• Not merely “complexity, networks, 

abstraction, recursion, modularity,…”

• But very specific forms of these.

• Formal methods have great potential

• Illustrate with case studies and cartoons: 

Internet versus bacterial biosphere

• Implicitly: importance of formal methods, not 

merely modeling and simulation
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• Spatial
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Network Math and Engineering 

(NetME) Challenges

• Predictive modeling, simulation, and analysis of 

complex systems in technology and nature

• Theoretical foundation for design of network 

architectures

• Balance rigor/relevance, integrative/coherent

• Model/simulate is critical but limited

– Predicting rare but catastrophic events

– Design, not merely analysis

– Managing complexity and uncertainty



“Architecture”

• Most persistent, ubiquitous, and global features 

of organization

• Constrains what is possible for good or bad

• Platform that enables (or prevents) innovation, 

sustainability, etc, 

• Internet, biology, energy, manufacturing, 

transportation, water, food, waste, law, etc

• Existing architectures are unsustainable

• Theoretical foundation is fragmented, 

incoherent, incomplete



Stochastics in Biology

• Arkin, Gillespie, Petzold, Khammash, El-Samad, Munsky, 

Paulsson, Vinnicombe, many others…

• Noise in the cellular environment

‣ Elowitz, van Oudenaarden, Collins, Swain, Xie, Elston, ...

• Stochastic Monte Carlo Simulation

‣ Kurtz, Gibson, Bruck, Anderson, Rathinam, Cao, Salis, Kaznessis, ...

• Statistical moment computations

‣ Hespanha, Singh, Verghese, Gomez-Uribe, Kimura

• Density function computations

‣McNamara, Sidje, ...

• Stochastic differential equation approximations

‣ van Kampen, Kurtz, Elf, Ehrenberg,...

• Spatial stochastic models and tools

‣ Elf, Iglesias,…

Very incomplete, idiosyncratic list



Other Influences

• Internet (Kelly/Low, Willinger, Clark, Wroclawski, 
Day, Chang, etc etc)

• Biology/Medicine (Savageau, G&K, Mattick, Csete, 
Arkin, Alon, Caporale, de Duve, Exerc Physio, Acute 
Care, etc etc…)

• Architecture (Alexander, Salingeros,…)

• Aerospace (many, Maier is a good book)

• Philosophy/History (Fox Keller, Jablonka&Lamb)

• Physics/ecology (Carlson)

• Management (Baldwin,…)

• Resilience/Safety/Security Engineering/Economics
(Wood, Anderson, Leveson, …) 



Biology versus the Internet

Similarities

• Evolvable architecture

• Robust yet fragile

• Constraints/deconstrain

• Layering, modularity

• Hourglass with bowties 

• Feedback

• Dynamic, stochastic

• Distributed/decentralized
• Not scale-free, edge-of-chaos, self-

organized criticality, etc

Differences

• Metabolism

• Materials and energy 

• Autocatalytic feedback

• Feedback complexity

• Development and 
regeneration

• >4B years of evolution

• How the parts work?



Biology versus the Internet

Similarities

• Evolvable architecture

• Robust yet fragile

• Constraints/deconstrain

• Layering, modularity

• Hourglass with bowties 

• Feedback

• Dynamics

• Distributed/decentralized
• Not scale-free, edge-of-chaos, self-

organized criticality, etc

Differences

• Metabolism

• Materials and energy 

• Autocatalytic feedback

• Feedback complexity

• Development and 
regeneration

• >4B years of evolution

Focus on

bacterial biosphere



Robust Yet Fragile

Question: Human complexity

 Efficient, flexible metabolism

 Regeneration & renewal 

 Rich microbial symbionts and

 Immune systems

 Complex societies

 Advanced technologies

 Obesity and diabetes

 Cancer

 Parasites, infection 

 Inflammation, Auto-Im.

 Epidemics, war, …

 Catastrophic failures



Robust Yet Fragile

Mechanism?

 Efficient, flexible metabolism

 Regeneration & renewal 

 Fat accumulation

 Insulin resistance

 Inflammation

 Obesity and diabetes

 Cancer

 Fat accumulation

 Insulin resistance

 Inflammation

Fluctuating 

energy 

Static 

energy 



Robust Yet Fragile

Implications/ 

Generalizations

 Efficient, flexible metabolism
 Rich microbial symbionts and
 Immune systems
 Regeneration & renewal 
 Complex societies
 Advanced technologies

 Obesity and diabetes
 Parasites, infection 
 Inflammation, Auto-Im.
 Cancer
 Epidemics, war, …
 Catastrophic failures

• Fragility = Hijacking, side effects, unintended… 
of mechanisms evolved for robustness 

• Complexity is driven by control, robust/fragile 
tradeoffs

• Math: New robust/fragile conservation laws
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Local

Geographically local

Local

Semantic (functionally) local

Network requirements

Resources

Diverse, Distributed Functions



Local Local Resources Local

Global, universal control

Diverse, Distributed Functions

Layered solution



Universal controlConstraints



Global, universal control

Diverse Resources

Diverse Functions

Universal controlConstraints

That deconstrain

That deconstrain
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my
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Physical

MAC

Switch

TCP
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Error/flow control

Relaying/Multiplexing

Error/flow control

Relaying/Multiplexing
Local

Global

Differ in 

• Details

• Scope
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Error/flow control
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Physical

Application
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Recursive control structure
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Local Local Resources Local

Layered control

Diverse, Distributed Functions

Layered solution



Layered control

How many layers are there?

As many as you need.



Local Resources

Diverse, Distributed Functions

Layered solution

And layers have sublayers

Physical

CircuitCircuitCircuit

Logical
Instructions



And layers have sublayers

Physical

CircuitCircuitCircuit

Logical
Instructions

Physical

CircuitCircuitCircuit

Logical
Instructions



Local Local Resources Local

Layered control

Diverse, Distributed Functions

Layered solution



Local

Diverse, Distributed Functions

Physical

CircuitCircuitCircuit

Logical
Instructions

Huge range of dynamics

• Spatial

• Temporal

Bewildering w/out 

clear grasp of 

layered architecture



TCP
IP

Physical

MAC

Switch

MAC MAC

Pt to Pt Pt to Pt

telephony

Diverse applications

telephony



Pathways (Bell)

Communications

Layers (Net)

Computer
Ancient network 

architecture: 

“Bell-heads versus 

Net-heads”

Operating 

systems

Phone systems



Cyber-Physical Theories

• Thermodynamics 

• Communications

• Control

• Computation



Physical

• Thermodynamics 

• Communications 

• Control

• Computation

Cyber

• Thermodynamics 

• Communications

• Control

• Computation

Internet Bacteria

Case studies



Physical

• Thermodynamics 

• Communications 

• Control

• Computation

Cyber

• Thermodynamics 

• Communications

• Control

• Computation

Promising unifications



Resources

Deconstrained

Applications

Deconstrained

Theoretical framework: 
Constraints that deconstrain

• Optimization

• Optimal control

• Robust control

• Game theory

• Network coding
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Physical

IP

TCP

ApplicationArchitecture 

is not graph 

topology.

Architecture 

facilitates 

arbitrary 

graphs.



Biology versus the Internet

Similarities

• Evolvable architecture

• Robust yet fragile

• Constraints/deconstrain

• Layering, modularity

• Hourglass with bowties 

• Feedback

• Dynamics

• Distributed/decentralized
• Not scale-free, edge-of-chaos, self-

organized criticality, etc



RNADNA Protein

From Pathways

Metabolic 

pathways

“Central dogma” Network 

architecture?

To Layers?



Computational Resources

Global, universal control

Diverse Physiological Functions

Layered Brain (Hawkins)?



Computational Resources

Global, universal control

Diverse Physiological Functions



Diverse Physiological Functions

Prediction 

Goals

Actions
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Enzymatically 

catalyzed reactions
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If we drew the feedback loops the 

diagram would be unreadable.
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Regulation of enzyme levels by 

transcription/translation/degradation
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Global, universal control

Diverse Resources

Diverse Functions

Universal controlConstraints

That deconstrain

Flow/error

Reactions

Macromolecules



Mature red blood 

cells live 120 days

Running only the top layers

products
S reactions P

Enz1 reaction3 Enzyme form/activity

Reaction rate

Enz2

“metabolism first” 

origins of life?
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Flow/error

Reactions

Protein level

Flow/error

Translation

RNA level

Flow/error

Transcription

DNA level



Diverse Reactions

DNADNADNA

Diverse Genomes

Flow/error

Protein level

Flow/error

Reactions

RNA level

Flow/error

Reactions

Conserved 

core 

control 



Flow/err

or

Reactions

Protein level

Flow/err

or

Reactions

RNA level

Flow/err

or

Reactions

DNA level

Top to bottom 

• Metabolically costly but 

fast to cheap but slow

• Special enzymes to 

general polymerases

• Allostery to regulated 

recruitment

• Analog to digital

• High molecule count to 

low (noise)

Rich Tradeoffs



Flow

Reactions

Protein level

Flow

Reactions

RNA level

Flow

Reactions

DNA level

Fragility example: Viruses

Viruses exploit the universal 

bowtie/hourglass structure to 

hijack the cell machinery.

Viral

genes

Viral

proteins



Biology versus the Internet

Similarities

• Evolvable architecture

• Robust yet fragile

• Constraints/deconstrain

• Layering, modularity

• Hourglass with bowties 

• Feedback

• Dynamics

• Distributed/decentralized
• Not scale-free, edge-of-chaos, self-

organized criticality, etc

Differences

• Metabolism

• Materials and energy 

• Autocatalytic feedback

• Feedback complexity

• Development and 
regeneration

• >4B years of evolution
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complex 
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What theory is relevant to 

these more complex 

feedback systems? 
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gene expression
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Autocatalysis 

everywhere
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All the enzymes 

are made from 

(mostly) proteins 

and (some) RNA.
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Rest of cell

This is just charging and discharging



Flow/error
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Rest of cell
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ATP supplies 

energy to all 

layers



Flow/error

Protein level

RNA

DNA

AMP level

ATP

cell
A*P

RNA

DNA

Lots of 

ways to 

draw this.
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RNA
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Enz1 reaction3
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Enzyme form/activity
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Enz2



trans.
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Transc.
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All products 

feedback everywhere

Proteins
Control?
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Huge range of dynamics

• Spatial

• Temporal

Bewildering w/out 

clear grasp of 

layered architecture



Archaea

Eukaryotes

Animals Fungi Plants

Bacteria Algae

What is locus 

of early 

evolution?
HGT and

Shared 

Protocols

Horizontal gene transfer

Architecture!?!
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Archaea

Eukaryotes

Animals Fungi Plants

Bacteria Algae

DNA level
Gene

Controlled, 

dynamic

HGT and

Shared 

Protocols

Horizontal gene transfer

• Not a static database

• Not only point mutations
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Highly robust 

• Diverse

• Evolvable

• Deconstrained 



Highly fragile 
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Control
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materials

More 
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feedback

What theory is relevant to 

these more complex 

feedback systems? 
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gene expression
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Robust yet fragile = fragile robustness



output=x

+

u

X j
S j

U j

ln ln

ln ln

X j
S j d d

U j

X j d U j d

Entropy rates

C
P

la
n
t

0

1
ln 0S j d

Hard limits



0 5 10 15 20
0.8

0.85

0.9

0.95

1

1.05

Time (minutes)

[A
T

P
]

h >> 1 

h = 1 

0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Frequency

L
o

g
(S

n
/S

0
)

h >>1 

h = 1 

Spectrum

Time response

Robust

Yet 

fragile

0ln lnhS j S j



P
la

n
t

output=x

+

u

X j
S j

U j

C

2 2

0

1
ln ln

z z p
S j d

z z p

0

1
ln 0S j d

The plant can make 

this tradeoff worse.



P
la

n
t

output=x

+

u

X j
S j

U j

C

2 2

0

1
ln ln

z z p
S j d

z z p

0

1
ln 0S j d

2k
z p RHPzero s q k s k

q

All controllers:    

Biological cells:   =



P
la

n
t

output=x

+

u

X j
S j

U j

C

2 2

0

1
ln ln

z z p
S j d

z z p

0

1
ln 0S j d

2k
z p RHPzero s q k s k

q

Small z is bad.



k
z

q

Small z is bad
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See El-Samad, Kurata, et al…

PNAS, PLOS CompBio
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Translation 

was not 

shown.

mRNA activity is 

actively controlled.



RNAP

DnaK

RNAP

DnaK

rpoH

FtsH Lon

Heat
mRNA

Other 

operons

DnaK

DnaK

ftsH

Lon



TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Allosteric

Trans*

RNAP

DnaK

RNAP

DnaK

rpoH

FtsH Lon

Heat

mRNA

DnaK

DnaK

ftsH

Lon

levels

rates

Layered control architectures



TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Allosteric

Trans*

RNAP

DnaK

RNAP

DnaK

rpoH

FtsH Lon

Heat

mRNA

DnaK

DnaK

ftsH

Lon

levels

rates
The greatest 

complexity 
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of rates
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All at the DNA layer
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All the enzymes 

are made from 

(mostly) proteins 

and (some) RNA.
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